JOURNAL AGRICULTURAL AND FOOD CHEMISTRY

Quince (Cydonia oblonga Miller) Fruit Characterization Using **Principal Component Analysis**

BRANCA M. SILVA,[†] PAULA B. ANDRADE,[†] RUI C. MARTINS,[§] PATRÍCIA VALENTÃO,[†] FEDERICO FERRERES,[#] ROSA M. SEABRA,^{*,†} AND Margarida A. Ferreira[⊥]

REQUIMTE, Servico de Farmacognosia and Servico de Bromatologia, Faculdade de Farmácia, Universidade do Porto, R. Aníbal Cunha, 4050-047 Porto, Portugal; Centre for Biological and Chemical Engineering, IST, Technical University of Lisbon, Av. Rovisco Pais, P-1049-001 Lisbon, Portugal; and Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Science and Technology, CEBAS-CSIC, P.O. Box 164, E-30100 Espinardo (Murcia), Spain

This paper presents a large amount of data on the composition of quince fruit with regard to phenolic compounds, organic acids, and free amino acids. Subsequently, principal component analysis (PCA) is carried out to characterize this fruit. The main purposes of this study were (i) the clarification of the interactions among three factors-quince fruit part, geographical origin of the fruits, and harvesting year-and the phenolic, organic acid, and free amino acid profiles; (ii) the classification of the possible differences; and (iii) the possible correlation among the contents of phenolics, organic acids, and free amino acids in quince fruit. With these aims, quince pulp and peel from nine geographical origins of Portugal, harvested in three consecutive years, for a total of 48 samples, were studied. PCA was performed to assess the relationship among the different components of quince fruit phenolics, organic acids, and free amino acids. Phenolics determination was the most interesting. The difference between pulp and peel phenolic profiles was more apparent during PCA. Two PCs accounted for 81.29% of the total variability, PC1 (74.14%) and PC2 (7.15%). PC1 described the difference between the contents of caffeoylquinic acids (3-O-, 4-O-, and 5-O-caffeoylquinic acids and 3,5-O-dicaffeoylquinic acid) and flavonoids (quercetin 3-galactoside, rutin, kaempferol glycoside, kaempferol 3-glucoside, kaempferol 3-rutinoside, quercetin glycosides acylated with p-coumaric acid, and kaempferol glycosides acylated with p-coumaric acid). PC2 related the content of 4-O-caffeoylquinic acid with the contents of 5-O-caffeoylquinic and 3,5-O-dicaffeoylquinic acids. PCA of phenolic compounds enables a clear distinction between the two parts of the fruit. The data presented herein may serve as a database for the detection of adulteration in quince derivatives.

KEYWORDS: Cydonia oblonga Miller; quince fruit; pulp; peel; phenolic compounds; organic acids; free amino acids; principal component analysis

INTRODUCTION

Quince is the fruit of a deciduous tree of the Rosaceae family, Cydonia oblonga Miller. Although quince fruit is not edible raw because of its hardness, bitterness, and astringency, it is very appreciated in Portugal for its jam, called "marmelada". According to Portuguese legislation (1), quince jam is the food product of a homogeneous and consistent mixture obtained exclusively by boiling quince mesocarp with sugars.

Before 1998, only a few chemical studies have been developed in this matrix. These works concerned mainly the volatile constituents of quince fruit (2-7) and the glucosides of procyanidin polymers (8).

For the past few years, quince fruit and its derivatives have been studied by our research group to examine their chemical constituents (9-19) and to evaluate their antioxidant potential (20). Among the various studied chemical parameters, the phenolic profile seemed to be the most useful in the discrimination of the different parts of quince fruit (pulp, peel, and seed) (10, 14, 15). This procedure also allowed the detection of adulterations in quince jams by the addition of quince peel (10).

As the published literature was based on results from only one year of quince harvest (2000), and considering the pos-

10.1021/jf040321k CCC: \$30.25 © 2005 American Chemical Society Published on Web 12/09/2004

^{*} Corresponding author (e-mail rseabra@ff.up.pt; telephone 351 222078934; fax 351 222003977).

REQUIMTE, Serviço de Farmacognosia. § Technical University of Lisbon.

[#] CEBAS-CSIC.

¹ REQUIMTE, Serviço de Bromatologia.

Table 1.	Phenolic	Composition	of	Quince	Pulps ^a
----------	----------	-------------	----	--------	--------------------

obser-	geographical							phenolic	compound (%))					
vation	origin	year	3-CQA	SD	4-CQA	SD	5-CQA	SD	3,5-diCQA	SD	Q-3-Gal	SD	Q-3-Rut	SD	Σ (mg/kg)
1 2 3	Amarante	2000 2001 2002	24.15 28.87 45.44	0.342 0.992 0.354	4.46 17.74 4.11	0.046 0.676 0.007	59.28 50.11 43.23	0.763 1.249 0.521	8.03 2.46 4.46	0.063 0.009 0.031	nd 0.24 1.19	0.012 0.011	4.08 0.57 1.57	0.149 0.020 0.020	134.3 167.1 208.1
4 5 6	Baião	2000 2001 2002	16.84 21.12 22.15	0.436 0.349 0.381	2.90 1.73 2.20	0.259 0.070 0.025	69.11 71.55 69.81	0.692 0.947 1.115	5.95 2.51 4.35	0.277 0.124 0.032	nd nd nd		5.20 3.09 1.49	0.580 0.036 0.087	142.2 135.6 364.8
7 8 9	Bragança	2000 2001 2002	7.63 32.74 41.37	0.045 0.648 0.624	4.87 2.53 4.95	0.014 0.068 0.008	47.80 62.79 46.47	0.776 0.273 0.902	tr 1.94 4.72	0.041 0.063	nd nd nd		39.71 nd 2.49	0.682 0.087	11.7 162.4 160.1
10	Caminha	2001	49.10	0.547	7.32	0.103	43.58	0.298	tr		nd		nd		154.1
11 12 13 14 15 16 17 18	Covilhã Custóias Pinhel	2000 2001 2002 2001 2002 2000 2001 2001	22.28 35.84 29.27 26.07 32.41 20.98 37.33 31.24	0.707 0.014 0.591 0.254 0.816 0.259 0.069 1.345	3.38 4.08 5.15 2.72 9.72 2.73 2.95 9.17	0.007 0.183 0.261 0.235 0.236 0.019 0.032 0.214	69.30 54.32 60.76 65.83 54.34 69.17 57.25 54.05	0.434 0.926 0.433 1.922 0.029 0.861 0.279 0.219	2.37 3.51 3.35 1.93 2.63 2.36 2.47 3.68	0.062 0.087 0.117 0.023 0.040 0.076 0.016 0.176	nd nd 0.89 0.30 1.57 nd nd	0.021 0.001 0.118	2.66 2.25 1.46 2.57 0.59 3.19 nd 1.85	0.093 0.041 0.041 0.053 0.006 0.024 0.036	155.9 206.7 260.9 322.9 518.6 268.3 343.8 365.0
19 20 21	Vila Real	2000 2001 2002	25.67 33.84 45.17	0.363 0.254 0.288	5.52 3.32 3.05	0.290 0.156 0.002	61.94 55.38 45.24	0.444 0.329 0.156	4.91 2.59 4.02	0.129 0.013 0.048	nd nd 1.08	0.011	1.96 4.87 1.43	0.116 0.604 0.065	88.3 136.5 313.2
22 23 24	Viseu	2000 2001 2002	27.51 44.88 30.28	0.016 0.568 0.507	4.55 6.11 17.77	0.068 0.096 0.062	59.90 42.89 48.50	0.945 0.169 0.660	3.31 3.33 0.49	0.159 0.055 0.015	nd nd nd		4.73 2.78 2.97	0.522 0.163 0.028	109.7 212.8 434.1
mean max min SD			30.51 49.10 7.63 10.058		5.54 17.77 1.73 4.273		56.78 71.55 42.89 9.400		3.14 8.03 tr 1.802		0.22 1.57 nd 0.458		3.81 39.71 nd 7.790		224.1 518.6 11.7 120.53

^a SD, standard deviation of three determinations; nd, not detected; tr, traces; Σ, sum of the determined phenolics; 3-CQA, 3-O-caffeoylquinic acid; 4-CQA, 4-O-caffeoylquinic acid; 5-CQA, 5-O-caffeoylquinic acid; 3,5-CQA, 3,5-O-dicaffeoylquinic acid; Q-3-Gal, quercetin 3-galactoside; Q-3-Rut, rutin.

sibility of the influence of geographical origin and harvesting year on the chemical profile, the paper herein reports, for the first time, the phenolic, organic acid, and free amino acid composition of quince fruit harvested in 2001 and 2002. Principal component analysis (PCA) was applied to the results of the three years of quince harvest to determine the relationship among the different components of quince fruit phenolics, organic acids, and free amino acids. PCA and ANOVA were performed separately for each chemical parameter.

The main purposes of this study were (i) to clarify the interactions between the studied factors (quince fruit part, geographical origin of the fruits, and harvesting year) and the phenolic, organic acid, and free amino acid profiles; (ii) to classify the possible differences; and (iii) to verify if there is a correlation among the contents of phenolics, organic acids, and free amino acids in quince fruit. Finally, after the acquisition of these data, we indicate what is the most useful parameter with regard to the quality control of these food products.

MATERIALS AND METHODS

Samples. Healthy quince fruit samples were collected in different places in northern (Amarante, Baião, Vila Real, Bragança, Custóias, and Caminha) and central (Viseu, Pinhel, and Covilhã) Portugal, in 2000 (14 samples), 2001 (18 samples), and 2002 (16 samples). For each sample from each geographical origin, \sim 1 kg of quince fruits was manually collected from around quince trees present in the quince orchard. All fruits were separated into pulp and peel. Each part of the fruit was cut in thin slices and freeze-dried. Lyophilization was carried out using a Labconco 4.5 apparatus (Kansas City, MO).

Standards. The standards were from Sigma (St. Louis, MO) and from Extrasynthése (Genay, France). Methanol and formic and

hydrochloric acids were obtained from Merck (Darmstadt, Germany), and sulfuric acid was from Pronalab (Lisboa, Portugal). Ethyl chloroformate (ECF) was from Aldrich (Steinheim, Germany) and pyridine from Fluka (Neu-Ulm, Germany). The water was treated in a Milli-Q water purification system (Millipore, Bedford, MA).

Solid-Phase Extraction (SPE) Columns. The Isolute C18 non-endcapped (NEC) SPE columns (50 μ m particle size, 60 Å porosity; 10 g of sorbent mass/70 mL of reservoir volume) were purchased from International Sorbent Technology Ltd. (Mid Glamorgan, U.K.). The benzenesulfonic SCX Spe-ed SPE cartridges (200 mg; 3 mL) were obtained from Applied Separations (Allentown, PA).

Extraction and HPLC Analysis of Phenolic Compounds. The extraction of phenolics was achieved as previously reported (9, 10, 15, 19). Briefly, each sample (~1 g) was thoroughly mixed with water (pH 2 with HCl) until complete extraction of the phenolic compounds (negative reaction to 20% NaOH) and filtered. One percent methanol was added to the filtrate, which was then passed through an Isolute C18 (NEC) column, preconditioned with 60 mL of methanol and 140 mL of water (pH 2 with HCl). Sugars and other polar compounds were eluted with the aqueous solvent. The retained phenolic fraction was then eluted with methanol (.~50 mL). The extract was concentrated to dryness under reduced pressure (40 °C) and redissolved in methanol (1 mL), and 20 μ L was analyzed by HPLC.

Separation of the phenolics was achieved as reported previously (9, 10, 15–20), with an analytical HPLC unit (Gilson), using a Spherisorb ODS2 (25.0 × 0.46 cm; 5 μ m, particle size) column. The solvent system used was a gradient of water/formic acid (19:1) (A) and methanol (B), starting with 5% methanol and installing a gradient to obtain 15% B at 3 min, 25% B at 13 min, 30% B at 25 min, 35% B at 35 min, 45% B at 39 min, 45% B at 42 min, 50% B at 44 min, 55% B at 47 min, 70% B at 50 min, 75% B at 56 min, and 80% B at 60 min, at a solvent flow rate of 0.9 mL/min. Detection was achieved with a Gilson diode array detector. The compounds in each sample were identified by comparing

Table 2.	Phenolic	Composition	of	Quince	Peelsa
	1 110110110	Composition	UI.	Quinco	1 0013

obser-	geographical								phenolic con	npound (%	%)					
vation	origin	year	3-CQA	SD	4-CQA	SD	5-CQA	SD	3,5-diCQA	SD	Q-3-Gal	SD	Q-3-Rut	SD	K-3-Gly	SD
25	Amarante	2000	10.72	0.257	1.53	0.066	26.65	0.083	3.50	0.159	2.39	0.055	39.56	4.354	2.18	0.017
26		2001	15.26	0.121	1.20	0.134	18.70	0.039	1.71	0.091	7.57	0.012	44.40	0.232	2.18	0.094
27		2002	13.40	0.295	1.22	0.039	17.86	0.550	1.55	0.131	3.88	0.339	47.29	1.797	2.06	0.100
28	Baião	2000	1.78	0.073	0.31	0.009	9.78	0.548	0.87	0.022	13.68	0.460	47.34	1.114	5.55	0.140
29		2001	4.22	0.105	0.96	0.009	16.56	0.316	1.01	0.088	10.13	0.159	45.66	0.044	3.68	0.018
30		2002	9.16	0.297	0.78	0.005	31.63	0.848	1.64	0.097	12.13	0.228	31.32	1.018	3.29	0.087
31 32	Bragança	2000 2001	0.12 7.35	0.008 0.007	0.10 2.53	0.001 0.046	2.10 26.74	0.015 0.327	0.76 tr	0.046	12.17 11.03	0.939 0.105	61.80 36.52	0.703 1.442	8.74 4.20	0.743 0.056
33	Caminha	2002	29.08	0.227	2.75	0.013	35.17	0.271	2.99	0.084	4.09	0.039	17.74	0.077	2.38	0.001
34		2001	19.88	0.460	2.70	0.062	27.84	0.450	1.02	0.017	4.77	0.158	32.68	0.133	1.88	0.142
35	Covilhã	2000	1.21	0.020	0.26	0.001	6.24	0.100	0.61	0.087	14.76	0.146	50.21	0.779	6.44	0.041
36		2001	12.27	0.010	2.43	0.002	24.20	0.377	1.89	0.053	7.36	0.050	36.31	0.129	3.42	0.028
37	Custóias	2002	12.57	0.269	8.15	0.254	38.10	0.528	2.27	0.065	6.36	0.048	22.91	0.824	2.18	0.064
38		2001	10.77	0.021	1.43	0.043	54.62	0.152	1.26	0.036	6.04	0.034	22.82	0.071	0.39	0.001
39		2002	23.99	0.200	2.23	0.046	43.07	0.543	1.71	0.008	3.62	0.071	14.58	0.303	2.58	0.045
40	Pinhel	2000	5.39	0.175	1.09	0.043	22.98	0.916	1.21	0.034	11.01	0.324	44.40	1.284	2.33	0.050
41		2001	10.49	0.117	1.40	0.078	23.45	0.151	1.51	0.130	11.69	0.188	36.43	0.883	3.06	0.104
42		2002	11.06	0.011	1.11	0.005	21.43	0.080	1.36	0.015	8.85	0.272	37.40	0.056	4.49	0.097
43	Vila Real	2000	12.08	0.300	1.91	0.026	26.85	0.821	2.69	0.127	8.45	0.290	39.07	1.605	1.37	0.023
44		2001	6.93	0.328	3.82	0.109	17.16	0.705	1.64	0.037	10.85	0.173	40.38	0.449	3.68	0.222
45		2002	18.57	0.388	1.21	0.001	24.26	0.442	2.02	0.091	8.55	0.103	33.09	0.759	2.42	0.024
46 47 48	Viseu	2000 2001 2002	5.33 21.41 19.41	0.081 0.512 1.079	0.83 1.65 1.67	0.028 0.078 0.013	12.67 21.16 23.38	0.133 0.815 0.861	1.29 2.44 2.05	0.060 0.105 0.078	tr 8.24 7.96	0.303 0.319	57.88 31.81 34.04	1.013 1.248 0.950	4.36 2.73 2.20	0.075 0.050 0.008
mean max min SD			11.77 29.08 0.12 7.426		1.80 8.15 0.10 1.613		23.86 54.62 2.10 11.478		1.63 3.50 tr 0.787		8.15 14.76 tr 3.743		37.74 61.80 14.58 11.437		3.24 8.74 0.39 1.773	

obser-	geographical							phenolic	compound (%)					
vation	origin	year	K-3-Glu	SD ^a	K-3-Rut	SD ^a	Q-Gly-pC1	SD ^a	Q-Gly-pC2	SD ^a	K-Gly-pC1	SD ^a	K-Gly-pC2	SD ^a	Σ (mg/kg)
25	Amarante	2000	1.53	0.055	3.38	0.056	3.08	0.081	1.20	0.073	1.57	0.130	2.71	0.206	1093.8
26		2001	0.84	0.028	2.39	0.025	2.46	0.023	1.07	0.010	0.80	0.001	1.44	0.012	981.0
27		2002	1.65	0.026	3.26	0.072	3.32	0.059	1.13	0.003	1.17	0.006	2.20	0.012	1566.4
28 29 30	Baião	2000 2001 2002	5.04 3.82 2.34	0.143 0.019 0.146	7.61 5.21 3.30	0.100 0.369 0.156	1.96 2.65 1.36	0.065 0.020 0.012	1.34 1.09 0.71	0.051 0.001 0.007	tr 1.83 0.82	0.018 0.007	4.74 3.19 1.51	0.208 0.060 0.047	1843.0 1417.3 1306.2
31	Bragança	2000	3.05	0.039	7.24	0.210	1.59	0.017	0.54	0.023	0.87	0.088	0.92	0.107	278.8
32		2001	3.22	0.099	4.36	0.216	1.06	0.106	0.78	0.023	0.82	0.011	1.39	0.001	1173.9
33	Caminha	2002	1.84	0.011	2.39	0.002	0.45	0.012	0.18	0.003	0.32	0.003	0.62	0.011	812.3
34		2001	1.02	0.033	2.02	0.074	2.55	0.008	0.82	0.009	1.80	0.013	1.03	0.020	694.6
35	Covilhã	2000	4.88	0.074	6.55	0.055	2.34	0.004	1.73	0.033	1.65	0.025	3.14	0.037	935.2
36		2001	2.23	0.058	4.46	0.004	1.54	0.005	0.77	0.002	1.08	0.004	2.04	0.055	758.0
37	Custóias	2002	1.41	0.091	2.39	0.111	1.20	0.081	0.47	0.002	0.88	0.081	1.11	0.038	1165.9
38		2001	0.24	0.001	0.33	0.001	1.16	0.007	0.48	0.002	0.29	0.005	0.17	0.001	1284.9
39		2002	2.07	0.009	2.75	0.039	0.68	0.014	0.34	0.018	0.77	0.026	1.61	0.020	632.4
40	Pinhel	2000	2.22	0.038	4.05	0.069	1.85	0.027	0.85	0.037	0.74	0.009	1.87	0.011	1882.8
41		2001	2.81	0.075	3.45	0.142	2.19	0.082	0.92	0.026	0.88	0.072	1.73	0.137	1962.4
42		2002	3.90	0.193	5.82	0.284	1.12	0.037	0.55	0.003	1.04	0.016	1.86	0.063	1695.6
43	Vila Real	2000	0.91	0.024	2.29	0.090	1.58	0.046	0.81	0.009	0.54	0.002	1.45	0.004	571.3
44		2001	3.05	0.022	4.91	0.120	2.18	0.028	1.39	0.008	1.41	0.108	2.60	0.241	1382.8
45		2002	1.65	0.021	3.01	0.064	1.90	0.127	0.77	0.080	0.77	0.093	1.77	0.162	1118.5
46 47 48	Viseu	2000 2001 2002	3.50 1.80 1.56	0.043 0.074 0.037	7.50 3.23 2.97	0.108 0.088 0.056	1.81 2.01 1.81	0.017 0.072 0.052	0.93 0.91 0.67	0.020 0.040 0.012	1.34 tr 0.74	0.080 0.010	2.56 2.61 1.53	0.001 0.113 0.051	1062.0 1105.7 1517.0
mean max min SD			2.36 5.04 0.24 1.249		3.95 7.61 0.33 1.890		1.83 3.32 0.45 0.708		0.85 1.73 0.18 0.354		0.92 1.83 tr 0.503		1.91 4.74 0.17 0.968		1176.7 1962.4 278.8 435.40

a SD, standard deviation of three determinations; tr, traces; Σ, sum of the determined phenolics; 3-CQA, 3-*O*-caffeoylquinic acid; 4-CQA, 4-*O*-caffeoylquinic acid; 5-CQA, 5-*O*-caffeoylquinic acid; 3,5-CQA, 3,5-*O*-dicaffeoylquinic acid; Q-3-Gal, quercetin 3-galactoside; Q-3-Rut, rutin; K-3-Gly, kaempferol 3-glycoside; K-3-Glu, kaempferol 3-glycoside; K-3-Rut, kaempferol 3-rutinoside; Q-Gly-pC1 and Q-Gly-pC2, quercetin glycosides acylated with *p*-coumaric acid; K-Gly-pC1 and K-Gly-pC2, kaempferol glycosides acylated with *p*-coumaric acid.

Comp. 1 (74 14%)

Figure 1. PCA of phenolic compounds in quince fruit, from 48 independent observations. CQA3, 3-O-caffeoylquinic acid; CQA4, 4-O-caffeoylquinic acid; CQA5, 5-O-caffeoylquinic acid; diCQA35, 3,5-O-dicaffeoylquinic acid; Q3Gal, quercetin 3-galactoside; Q3Rut, rutin; K3Gly, kaempferol 3-glycoside; K3Glu, kaempferol 3-glycoside; K3Rut, kaempferol 3-rutinoside; QGlypC1 and QGlypC2. quercetin glycosides acylated with *p*-coumaric acid; KGlypC1 and KGlypC2, kaempferol glycosides acylated with *p*-coumaric acid.

their retention times and UV-vis spectra in the 200-400 nm range with the library of spectra previously compiled by the authors. Peak purity was checked by means of the Gilson 160 SpectraViewer Software Contrast Facilities.

Phenolic compounds quantification was achieved by the absorbance recorded in the chromatograms relative to external standards. 3- and 4-*O*-caffeoylquinic and 3,5-*O*-dicaffeoylquinic acids were quantified as 5-*O*-caffeoylquinic acid. Kaempferol glycoside and kaempferol glycosides acylated with *p*-coumaric acid were quantified as kaempferol 3-glucoside. Quercetin glycosides acylated with *p*-coumaric acid were quantified as quercetin 3-galactoside. The other compounds were quantified as themselves.

Extraction and HPLC Analysis of Organic Acids. The sample preparation was performed as reported by Silva et al. (11, 15, 19). Briefly, each sample (~1 g) was thoroughly mixed with methanol (10 × 50 mL) (40 °C). The methanolic extract was filtered, concentrated to dryness under reduced pressure (40 °C), and redissolved in acid water (pH 2 with HCl) (~50 mL). The aqueous solution was then passed through an Isolute C18 (NEC) column, previously conditioned with 30 mL of methanol and 70 mL of acid water (pH 2 with HCl). The aqueous extract was evaporated to dryness under reduced pressure (40 °C) and redissolved in sulfuric acid 0.01 N (5 mL), and 20 μ L was analyzed by HPLC.

The separation was carried out as previously reported (11, 15, 19, 20), with an analytical HPLC unit (Gilson), using a ion exclusion column Nucleogel Ion 300 OA (300×7.7 mm), in conjunction with a column heating device at 30 °C. Elution was carried out at a solvent flow rate of 0.1 mL/min, isocratically with 0.01 N sulfuric acid as the mobile phase. Detection was performed with an Gilson UV detector at 214 nm.

Organic acids quantification was achieved by the absorbance recorded in the chromatograms relative to external standards. Malic and quinic acids were quantified together and as malic acid. The other acids were quantified as themselves.

Extraction and GC Analysis of Free Amino Acids. Extraction was conducted according to the method of Silva et al. (*12*, *13*, *15*, *19*). Briefly, each sample (~1.5 g) was thoroughly mixed with 3×25 mL of acid water (pH 2.2 with 0.1 M HCl) at room temperature with magnetic stirring for 3×10 min. The extracts were gathered, filtered, and passed through an SCX cartridge, previously conditioned with 10 mL of methanol and 10 mL of 5 mM HCl. The amino acids were eluted with a mixture of ammonia (4 M) and methanol (50:50 v/v) ($3 \times 500 \mu$ L). To each extract, an amount of 150μ L of L-*p*-chlorophenylalanine solution (10 μ L/mL) (internal standard) was added. The obtained solutions were dried under a N₂ stream and kept below 0 °C until derivatization.

The derivatization of L-amino acids was carried out as reported previously (12, 13, 15, 19): each dried residue was dissolved in 60 μ L of water and 40 μ L of ethanol/pyridine (4:1), an amount of 5 μ L of ethyl chloroformate was added, and the solution was vortex-mixed (3–5 s). Five minutes later, 150 μ L of dichloromethane and ~0.01 g of NaCl were added, and the vial was thoroughly shaken for the extraction of the derivatives into the organic layer. This phase was transferred into a 200 μ L insert adjustable to the liquid sampler vials. About 1.5 μ L was injected into the gas chromatographic system.

Separation of L-amino acids was achieved by gas chromatography, carried out with a Chrompack CP 9001 instrument (Chrompack, Middelburg, The Netherlands), equipped with a flame ionization detector (FID), and an automatic liquid sampler (CP-9050, Chrompack) (12, 13, 15, 19). The injector and the detector were kept at 250 and

Comp.1 (37.54%)

Figure 2. PCA of organic acids in quince fruit, from 48 independent observations.

280 °C, respectively. The GC was equipped with an electronic pressure control, allowing programmable gas pressure during the chromatographic run. Helium as carrier gas was used with the following pressure program: increase from initial 50 (1 min hold) to 70 kPa at 4 min. A CP-Sil 19 CB (10 m × 0.25 mm i.d.) WCOT fused-silica capillary column (Varian) was used with the following temperature program: increase from 140 °C (1 min hold) to 280 °C at 40 °C/min.

The amino acids were identified by their retention times and chromatographic comparison with authentic standards. Quantification was based on the internal standard method using l-*p*-chlorophenylalanine.

Statistical Analysis. Experimental Design. Quince pulp and peel were analyzed in terms of phenolics, organic acids, and free amino acids. The analysis comprised results from nine different locations from Portugal, throughout the harvesting years of 2000, 2001, and 2002. It was not possible to obtain quince fruit samples for every harvesting year. Therefore, the analysis was carried out with the partial factorial design without replication (21, 22), totaling 48 samples. The factors that were evaluated were quince fruit part, geographical origin, and harvesting year. Factor combinations and responses are presented in Tables 1-6.

Software. All statistical analyses involving the experimental data were performed using R 1.9.0 for Linux (23).

Multifactor ANOVA. A multifactor ANOVA (without replication) was performed to evaluate the effects of the studied factors—quince fruit parts (pulp and peel), Portugal region (Amarante, Baião, Bragança, Caminha, Covilhã, Custóias, Pinhel, Vila Real, and Viseu), and harvesting year (2000–2002)—on phenolics, organic acids, and free amino acids.

The multifactor linear regression model was analyzed for residuals normality and skewness to assess the validity of the ANOVA analysis. Despicable factor effects were removed from the full linear model to improve the accuracy of the analysis. The ANOVA tables and factor probabilities and their combinations were obtained. The Tukey multicomparison test was used to perform pairwise comparisons among factor level means (24).

Correlations. Pearson correlation coefficients among phenolics, organic acids, and free amino acids were calculated to obtain the possible correlation among the different quince fruit constituents (24).

Principal Component Analysis. PCA was performed to assess the correspondences among the different components of quince fruit phenolics, organic acids, and free amino acids. PCA was performed separately for each chemical parameter studied (phenolic, organic acid, and free amino acid profiles) and also for the global data.

Principal components (PCs) were analyzed for their variance percentage and component coefficients, to determine their significance. The Gabriel plot (biplot), using optimal scaling, was performed to gain greater insight into the relationships between quince fruit components, to interpret the different groups of data (25).

RESULTS AND DISCUSSION

The analytical variation of the used methodologies is despicable, once these techniques were previously validated (9-12).

Phenolic Compounds. Generally, quince pulps presented a chemical profile composed of six identified phenolic compounds: 3-*O*-, 4-*O*-, and 5-*O*-caffeoylquinic acids, 3,5-*O*-dicaffeoylquinic acid, quercetin 3-galactoside, and rutin (**Table 1**), which is in accordance with previous studies (*10, 19, 20*). Usually, quince peels contained 13 phenolics: the 6 compounds present in pulps, plus kaempferol 3-glucoside, kaempferol 3-rutinoside, and 5 not totally identified compounds (1 kaempferol glycoside, 2 quercetin glycosides acylated with *p*-coumaric

Table 3.	Organic	Acid	Composition	of	Quince	Pulps ^a
	•	,	•••••••••	•••	~~~~~~	

obser-	geographical							organic	c acid (%)						
vation	origin	year	OA	SD	CA	SD	AA	SD	MA + QA	SD	SA	SD	FA	SD	Σ (mg/kg)
1 2 3	Amarante	2000 2001 2002	nd 0.09 0.12	0.001 0.001	8.42 1.71 3.88	0.141 0.016 0.038	0.80 0.30 2.14	0.011 0.013 0.089	90.46 97.78 93.53	0.127 1.262 0.406	0.32 0.13 0.33	0.004 0.002 0.001	tr tr tr		8162.3 10536.6 7416.1
4 5 6	Baião	2000 2001 2002	0.04 0.08 0.15	0.001 0.001 0.004	tr 0.35 0.48	0.010 0.034	2.29 0.93 1.76	0.080 0.005 0.001	97.45 98.50 97.35	1.968 1.353 1.097	0.22 0.14 0.26	0.002 0.002 0.001	0.01 nd 0.01	0.001 0.001	6901.4 10670.0 5337.1
7 8 9	Bragança	2000 2001 2002	nd 0.06 0.02	0.002 0.001	0.11 0.34 1.67	0.003 0.003 0.052	0.91 0.79 0.73	0.042 0.010 0.017	98.88 98.69 97.20	1.044 0.613 0.389	0.09 0.12 0.38	0.001 0.001 0.007	0.01 nd nd	0.001	12786.4 17393.9 5860.7
10	Caminha	2001	0.67	0.009	0.43	0.011	3.91	0.028	94.77	0.245	0.22	0.001	nd		4794.1
11 12 13	Covilhã	2000 2001 2002	0.04 0.27 0.05	0.001 0.001 0.002	4.00 3.91 1.42	0.091 0.123 0.022	0.11 0.46 0.77	0.014 0.001 0.004	95.68 95.15 97.41	2.225 1.843 1.441	0.17 0.19 0.35	0.002 0.001 0.011	0.01 0.02 nd	0.001 0.001	13962.1 7397.0 6027.9
14 15	Custóias	2001 2002	0.10 0.22	0.003 0.013	0.26 0.95	0.013 0.047	0.07 3.88	0.003 0.087	99.46 94.65	3.896 0.096	0.11 0.30	0.002 0.005	nd nd		8219.0 3497.0
16 17 18	Pinhel	2000 2001 2002	0.05 0.12 nd	0.003 0.003	0.39 3.32 1.65	0.006 0.105 0.008	0.32 0.49 0.53	0.013 0.018 0.018	99.10 95.85 97.44	0.711 2.257 0.157	0.14 0.23 0.38	0.001 0.001 0.001	0.01 nd nd	0.001	14185.8 6924.9 3293.0
19 20 21	Vila Real	2000 2001 2002	tr 0.12 0.21	0.004 0.001	2.13 1.42 4.39	0.018 0.034 0.015	0.34 0.88 3.72	0.008 0.009 0.064	97.35 97.30 91.40	0.573 5.666 0.708	0.17 0.29 0.28	0.001 0.005 0.001	0.01 nd 0.01	0.001 0.001	11284.4 6532.8 4346.5
22 23 24	Viseu	2000 2001 2002	nd 0.06 0.04	0.002 0.002	2.62 6.37 0.45	0.024 0.155 0.003	0.39 0.56 1.53	0.008 0.052 0.119	96.80 92.31 97.69	0.665 1.325 0.692	0.19 0.68 0.28	0.001 0.001 0.001	0.01 0.01 nd	0.001 0.001	9690.1 2295.8 8367.2
mean max min SD			0.10 0.67 nd 0.141		2.11 8.42 tr 2.157		1.19 3.91 0.07 1.174		96.34 99.46 90.46 2.431		0.25 0.68 0.09 0.127		0.00 0.02 nd 0.006		8161.8 17393.9 2295.8 3794.32

^a SD, standard deviation of three determinations; nd, not detected; tr, traces; Σ, sum of the determined organic acids; OA, oxalic acid; CA, citric acid; AA, ascorbic acid; MA, malic acid; QA, quinic acid; SA, shikimic acid; FA, fumaric acid.

Table 4. (Organic <i>I</i>	Acid	Composition	of	Quince	Peels ^a
------------	------------------	------	-------------	----	--------	--------------------

obser-	geographical							organic	c acid (%)						
vation	origin	year	OA	SD	CA	SD	AA	SD	MA + QA	SD	SA	SD	FA	SD	Σ (mg/kg)
25 26 27	Amarante	2000 2001 2002	nd 0.12 0.16	0.003 0.003	4.65 0.73 4.07	0.134 0.020 0.192	1.00 1.36 2.62	0.018 0.129 0.135	93.80 97.60 92.78	0.023 1.182 5.272	0.55 0.19 0.37	0.002 0.001 0.001	0.01 tr tr	0.001	4271.0 8987.8 7228.6
28 29 30	Baião	2000 2001 2002	tr 0.14 nd	0.001	1.99 0.87 0.54	0.029 0.037 0.048	0.32 0.74 2.11	0.026 0.050 0.108	97.51 98.08 97.14	1.976 4.163 0.368	0.17 0.17 0.22	0.003 0.001 0.001	0.01 nd nd	0.001	13511.1 12185.6 4676.7
31 32 33	Bragança	2000 2001 2002	tr 0.18 0.10	0.002 0.001	0.62 0.48 1.27	0.042 0.024 0.015	1.60 1.00 0.48	0.027 0.024 0.039	97.53 98.19 97.66	4.361 0.322 1.280	0.24 0.15 0.49	0.002 0.001 0.001	0.01 nd nd	0.001	7757.9 12583.4 5147.5
34	Caminha	2001	nd		1.75	0.143	4.76	0.258	93.03	2.892	0.46	0.027	nd		3859.7
35 36 37	Covilhã	2000 2001 2002	tr 0.13 0.21	0.001 0.002	1.00 0.55 1.94	0.007 0.016 0.026	0.53 tr 1.07	0.026 0.104	98.23 99.15 96.42	0.009 2.659 1.725	0.23 0.17 0.36	0.005 0.001 0.003	0.01 nd nd	0.001	13974.6 13413.7 7001.1
38 39	Custóias	2001 2002	0.27 nd	0.003	0.37 1.55	0.013 0.001	1.45 3.37	0.018 0.124	97.74 94.68	3.178 0.127	0.16 0.40	0.007 0.001	nd nd		15511.9 4125.5
40 41 42	Pinhel	2000 2001 2002	nd 0.11 0.21	0.001 0.001	5.87 0.36 2.67	0.738 0.001 0.043	0.57 0.98 2.45	0.012 0.099 0.060	93.40 98.28 94.27	3.248 4.379 0.664	0.15 0.27 0.40	0.002 0.003 0.002	0.01 nd 0.01	0.001 0.001	13496.8 10414.5 2533.7
43 44 45	Vila Real	2000 2001 2002	0.13 0.17 nd	0.006 0.004	1.01 0.76 1.64	0.066 0.044 0.092	1.64 2.94 1.85	0.022 0.013 0.034	96.87 95.81 96.23	3.779 1.635 0.105	0.28 0.31 0.27	0.011 0.003 0.003	0.06 0.01 nd	0.001 0.001	9160.4 8203.4 8276.0
46 47 48	Viseu	2000 2001 2002	nd 0.10 nd	0.001	1.89 0.34 0.95	0.052 0.005 0.057	1.18 1.59 tr	0.016 0.040	96.67 97.38 98.68	1.630 0.839 1.815	0.25 0.60 0.37	0.001 0.006 0.013	0.01 nd nd	0.001	10769.3 4252.0 8182.0
mean max min SD			0.08 0.27 nd 0.088		1.58 5.87 0.34 1.437		1.48 4.76 tr 1.128		96.55 99.15 92.78 1.893		0.30 0.60 0.15 0.131		0.01 0.06 nd 0.012		8730.2 15511.9 2533.7 3813.83

^a SD, standard deviation of three determinations; nd, not detected; tr, traces; Σ, sum of the determined organic acids; OA, oxalic acid; CA, citric acid; AA, ascorbic acid; MA, malic acid; QA, quinic acid; SA, shikimic acid; FA, fumaric acid.

amino acid (%)

	SU ^a	0.989 1.176 1.024	0.548 0.304 0.075	0.216 0.253 0.107	0.330	1.753 0.029 0.337	0.197 0.150	1.139 0.905 0.355	0.412 0.464 0.767	0.143 0.839 0.374			E (µg/kg)	526.2 1575.5 480.4	1044.6 1424.9 1355.7	1055.4 1236.7 1714.5	1587.3	579.6 390.8 3113.9	3054.1 2259.0	1356.6 758.8 946.9	771.9 707.1 1018.3	315.9 668.1 1735.8	1274.1 3113.9 315.9 762.03
	Asp	15.06 21.97 28.84	15.67 13.79 22.58	23.01 9.06 11.34	20.03	32.25 20.37 15.86	22.01 18.43	33.97 15.05 13.42	11.01 14.89 17.71	35.21 26.31 17.73	19.82 35.21 9.06 7.219		<u>SD</u>	0.163 0.011 0.004	0.023 0.001 0.018	0.085 0.001 0.015	0.008	0.002 0.001 0.043	0.001 0.033	0.029 0.026	0.021 0.003 0.051	0.026 0.044 0.035	
d	SU	0.517 0.547 0.151	0.341 0.461 0.171	0.555 0.707 0.245	1.031	0.063 1.814 0.061	0.353 0.492	0.262 0.151 0.945	0.821 1.107 0.811	0.670 1.341 0.182			Trp	3.83 0.34 0.45	0.76 0.05 0.57	1.77 0.11 1.42	0.12	0.10 0.04 1.73	0.14	0.92 0.92 0	0.55 0.24 0.24 0.3	0.59 0.46 0.131	0.77 3.83 nd 0.844
	Asn	17.23 15.50 4.75	12.50 9.72 5.92	17.88 18.73 40.04	55.72	9.44 50.32 45.70	27.58 30.55	8.95 8.28 28.63	39.78 31.99 22.40	12.76 28.30 14.84	23.23 55.72 4.75 14.651		SD	0.011 0.004 0.008	0.010 0.001 0.012	0.0090.0000	0.001	0.002 0.002 0.002	0.002	0.003 0.002 0.001	0.001	0.003	
đ	S	0.491 0.471 0.992	0.123 0.257 0.207	0.046 0.260 0.182	0.098	0.415 0.226 0.050	0.230 0.414	0.859 0.585 0.510	0.131 0.176 0.462	0.219 0.276 0.330			Tyr	0.21 0.04 0.27	0.33 0.02 0.29	0.04 0.16 0.08	0.01	0.07 0.07 0.07	0.07	0.09 0.13 0.13	0.05	0.06	0.10 0.33 0.089
ē	Glu	7.93 20.67 21.84	8.11 10.62 17.98	4.46 10.56 10.76	2.82	9.45 5.42 9.77	7.68 11.59	12.29 12.97 20.57	5.59 10.85 20.83	3.62 12.79 20.75	11.66 21.84 2.82 5.895		SD	1.371 0.184 0.151	0.021 0.119 0.745	0.048 0.060 0.093	0.038	0.074 0.146 0.090	0.024 0.670	0.095 0.161 0.280	0.031 0.215 0.087	0.043 0.095 0.432	
đ	SU	0.145 0.047 0.075	0.622 0.065 0.027	0.021 0.049 0.054	0.008	0.119 0.051 0.007	0.070 0.018	0.121 0.074 0.201	0.293 0.097 0.020	0.068 0.010 0.045			His	1.96 3.15 4.18	1.49 2.61 6.43	2.51 1.19 0.84	0.96	1.37 3.14 2.32	0.64 8.03	1.11 2.93 6.67	0.75 5.22 5.32	2.05 2.05 2.77	5.79 1.96 0.64 6.184
4	Ser	1.86 1.44 7.03	7.46 0.83 1.12	1.82 1.93 1.79	0.52	8.91 2.18 0.49	1.33 0.51	2.44 0.92 4.99	5.11 1.79 3.72	4.57 0.70 2.75	2.76 8.91 0.49 2.383		SD	063 2 019 2 037	.197 .037 .098	006	.034	0056 007 11	007	053	031	0282	5
đ	su	0.042 0.058 0.085	0.067 0.036 0.050	0.050 0.005 0.003	0.004	0.142 0.260 0.013	0.039 0.003	0.023 0.046 0.031	0.048 0.038 0.010	0.015 0.045 0.006			-ys	37 0. 41 0. 68 0.	28334	03 57 68 0.0	79 0.	67 66 37 0.0	21 0.0	0.0.0	24	662 662 60 00 00	20 64 821
Ē	Ihr	0.50 3.33 2.09	3.60 1.44 1.13	0.95 1.42 0.06	0.27	2.53 5.66 0.33	2.66 0.09	0.76 1.16 0.84	1.16 0.39 0.57	2.30 2.42 0.12	1.49 5.66 0.06 1.366			006 008 004 1.	092 092 3. 001 2. 1.	011 2. 005 0. 002 0.	001 0.	007 1. 001 0.	001 0.	002 011 001 1. 0.	003	003 0.1 0.0	- <u>6</u> 0 0
add (%)	SU	0.040 0.009 0.018	0.057 0.007 0.010	0.036 0.007 0.003	0.005	0.028 0.025 0.003	0.003 0.006	0.033 0.004 0.013	0.061 0.010 0.005	0.043 0.009 0.004		(6)	Drn	23 11 0.0	78 0. 13 0. 37 0.	15 11 09 0.0	02 0.	14 14 14 14 14 14 14 14 14 14 14 14 14 1	01 18 0.	10 16 02 02 0. 0. 0. 0.	0.0 0.0 0.0 0.0	0.0.0 02	17 78 01 177
amino	Pro	0.95 0.22 0.42	1.50 0.14 0.23	1.06 0.15 0.21	0.11	0.58 0.46 0.18	0.23 0.22	0.65 0.14 0.44	2.43 0.31 0.34	1.05 0.25 0.24	0.52 2.43 0.11 0.543	mino acid (%	0	040 060 068 0.0	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	219 007 002 0.0	0.0	0.00 025 021 000 021 000	0.029 0.014 0.01	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0.00 014 0.00	0.00	0000
ė	S	0.050 0.024 0.063	0.285 0.024 0.022	0.058 0.039 0.016	0.017	0.125 0.020 0.005	0.006 0.003	0.042 0.095 0.033	0.008 0.032 0.013	0.057 0.007 0.021			ll (881 0.000 0.000	95 91 91 0.0 0.0	31 20 00 00 00 00 00 00 00 00 00 00 00 00	46 0.	86 20 20 20 20 20 20 20 20 20 20 20 20 20	62 77 0.	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33 32 0 0 0	5 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 31 863
:	le	2.61 0.42 2.46	6.72 1.80 1.23	1.21 1.96 0.69	0.28	2.01 0.61 0.31	0.38 0.12	1.56 2.14 0.98	1.84 0.96 0.39	1.93 0.24 0.59	1.39 6.72 0.12 1.374		0	0.12 0.1 1.1 1.1 1.1 1.2 1.0	131 1.1 336 0.1 347 0.1	0128 0128 013 013 013 013 013 013 013 013 013 013	0.4	572 1. 158 1.1 007 1.	0.0 0.0 0.0	223 2. 105 0. 168 1.0	000	268 2.1 181 1.1 225 0.1	- 6 0 0
d	SU	0.030 0.009 0.004	0.103 0.002 0.003	0.030 0.002 0.004	0.001	0.023 0.002 0.002	0.002 0.001	0.008 0.007 0.008	0.020 0.007 0.002	0.015 0.010 0.001			/s	54 0.0 0.0	35 91 13 0.0	27 33 36 0.0 0.0	12 0.0	91 0.0 24 55 0.0	57 0.1 16 0.1	15 39 71 0.0	13 74 0.0	3 28 25	39 91 905
	Leu	0.91 0.16 0.13	1.51 0.08 0.18	0.47 0.08 0.14	0.04	0.35 0.09 0.12	0.09 0.04	0.49 0.27 0.41	0.49 0.13 0.10	0.40 0.19 0.08	0.29 1.51 0.04 0.332		Ο Ο	26 0.5 9.1	12 - 2.6 21 - 2.6 22 - 1.9	16 2.5 01 1.8 0.6	1.1	0.41 0.41 0.42	0.0	05 2.1.6	80 70 80	522 01 01 01 01 01 01	11.2
đ	2 N	0.116 0.009 0.033	0.116 0.005 0.025	0.058 0.039 0.020	0.013	0.028 0.014 0.018	0.00900000	0.080 0.060 0.116	0.077 0.007 0.013	0.078 0.043 0.013			e SC	0.0.0	0.0.0.0.00	0.000	0.00	0.000	0.0	0.0	0.00	0000	5
	Val	2.61 0.29 0.85	4.58 0.22 0.83	1.80 0.96 1.02	0.27	0.78 0.48 0.71	0.84 0.28	1.55 1.31 2.70	1.73 0.71 0.43	1.82 0.49 0.47	1.16 4.58 0.22 1.012		Phe	3 1.53 4 0.76 8 0.26	6 1.27 2 0.02 5 0.37	3 0.28 4 0.03 0.34	3 0.05	2 0.21 1 0.04 1 0.15	7 0.09 7 0.20	6 1.05 4 0.10 2 0.34	5 1 0.38 0.38	9 0.19 9 0.06 0.80	0.41 1.53 0.02 0.41
đ	su	0.540 0.299 0.011	0.540 0.747 0.538	0.539 1.545 0.252	0.006	0.036 0.012 0.047	0.092 0.074	0.211 1.648 0.173	0.169 0.433 0.070	0.093 0.065 0.231			SD	0.25 0.44 0.27	0.16 0.16 0.06	0.39 0.84 0.47	0.66	0.49 0.05 0.13	1.59	0.37 0.19 0.25	0.52	0.83	+
ē	Gly	12.88 7.92 0.29	17.03 46.69 16.64	13.70 32.61 8.06	0.15	0.83 0.47 3.93	3.86 2.95	3.47 44.98 4.53	5.22 17.86 2.08	2.03 1.69 10.88	10.86 46.69 0.15 13.238		Hyp	3.17 18.90 7.95	2.38 6.58 4.97	19.49 16.66 9.58	15.19	12.97 2.06 4.60	30.26 11.88	19.50 4.70 5.93	9.64 9.53 18 25	16.85 15.36 12.98	11.64 30.26 2.06 6.994
đ	۲ אר	0.196 0.086 0.079	0.196 0.011 0.140	0.048 0.037 0.034	0.013	0.094 0.053 0.036	0.009 0.002	0.103 0.002 0.046	0.301 0.023 0.067	0.143 0.164 0.040			SD	0.005 0.004 0.009	0.002 0.001 0.001	0.010 0.013 0.016	0.001	0.031 0.013 0.007	0.002 0.001	0.016 0.001 0.007	0.003 0.002	0.024 0.003 0.001	
:	Ala	2.45 1.94 3.38	5.96 1.00 3.77	1.60 1.24 1.75	0.95	2.44 1.48 1.47	0.61 1.68	3.59 2.04 3.32	7.93 2.17 1.46	3.97 1.38 1.43	2.46 7.93 0.61 1.693		Met	0.07 0.09 0.24	0.13 0.06 0.07	0.17 0.15 0.34	0.13	0.81 0.39 0.14	0.02 0.07	0.35 0.01 0.60	0.36 0.05 0.03	0.34 0.37 0.09	0.21 0.81 0.01 0.199
	year	2000 2001 2002	2000 2001 2002	2000 2001 2002	2001	2000 2001 2002	2001 2002	2000 2001 2002	2000 2001 2002	2000 2001 2002			year	2000 2001 2002	2000 2001 2002	2000 2001 2002	2001	2000 2001 2002	2001 2002	2000 2001 2002	2000 2001	2000 2001 2002	
geographical	origin	Amarante	Baião	Bragança	Caminha	Covilhã	Custóias	Pinhel	Vila Real	Viseu		deodraphica	origin	Amarante	Baião	Bragança	Caminha	Covilhã	Custóias	Pinhel	Vila Real	Viseu	
obser-	vation	9 7 7	6 5 4	6 × 2	10	12 13	15	16 17 18	19 20 21	23 24 23	mean min SD	ohser-	vation	3 2 1	6 5 4	7 8 9	10	13 12 1	14 15	16 17 18	19 20	5 23 23	mean max SD

Table 5. Free Amino Acid Composition of Quince Pulps^a

118	J. Agric.	Food Chem	., Vol. 53,	No.	1, 2005
-----	-----------	-----------	-------------	-----	---------

Table 6. Free Amino Acid Composition of Quince Peels^a

	SD	0.418 0.320 0.231	0.336 0.500 0.961	1.043 0.372 2.471	0.652 0.807 0.070 0.236	0.717 0.378	0.235 0.503 0.169	0.488 0.045 0.799	1.038 0.330 0.956			Σ (µg/kg)	616.3 793.6 755.9	1819.9 461.4 1861.8	1529.9 454.1 1213.2	1289.6	700.1 2334.6 1816.8	1753.6 1150.1	874.1 696.4 930.4	511.7 903.5 1484.3	1017.3 1368.8 771.2	1129.5 2334.6	454.1 518.05	sparagine;
	Asp	12.56 15.57 9.42	13.89 18.65 19.77	20.96 12.32 23.28	28.69 14.83 10.43	18.69 17.48	37.72 13.42 10.21	11.99 14.78 17.49	23.85 19.52 18.38	17.43 37.72 9.42 6.390		SD	0.164 0.004 0.004	0.005 0.007 0.005	0.056 0.004 0.024	0.011	0.002 0.016 0.019	0.002 0.011	0.004 0.043 0.021	0.004 0.011 0.013	0.035 0.022 0.015			id; Asn, as tophan.
	SD	2.022 0.492 0.075	0.118 0.142 0.163	0.278 0.796 0.362	1.541 0.091 0.795 0.802	0.798 0.474	0.223 0.243 0.467	0.713 0.135 0.455	0.621 1.034 0.013			Trp	8.65 0.35 0.26	0.23 0.17 0.18	0.92 0.06 0.84	0.35	0.07 0.32 0.94	0.18 0.54	0.42 0.45 0.96	0.10 0.47 0.71	0.64 1.17 0.45	0.81 8.65	0.06 1.699	lutamic ac ; Trp, tryp
	Asn	22.56 36.22 1.14	6.19 7.00 3.39	13.53 18.46 19.10	33.78 5.77 36.84 24.52	31.75 24.56	8.33 9.58 16.46	19.92 17.63 13.40	17.45 35.55 4.21	17.81 36.84 1.14 11.131		SD	0.006 0.001 0.004	0.005 0.008 0.001	0.010 0.005 0.012	0.001	0.001 0.005 0.002	0.012 0.003	0.001 0.017 0.001	0.009 0.003 0.002	0.004 0.001 0.008			ne; Glu, g r, tyrosine
	SD	0.293 0.947 1.346	0.284 1.825 0.814	0.321 0.508 0.352	0.445 0.098 0.360 0.698	0.835 0.439	0.363 0.673 0.397	0.032 0.883 0.795	0.082 0.503 0.933			Tyr	0.08 0.18 0.15	0.31 0.19 0.02	0.17 0.20 0.16	0.01	0.04 0.11 0.08	0.28 0.08	0.05 0.18 0.05	0.09 0.05 0.07	0.10 0.06 0.18	0.12 0.31	0.01 0.079	; Ser, serii tidine; Tyi
	Glu	8.38 19.27 47.03	12.73 39.89 26.77	7.52 13.21 12.45	14.43 3.20 10.83 14.01	15.97 15.08	11.09 20.70 24.05	7.28 23.47 24.21	3.42 14.57 42.77	18.01 47.03 3.20 11.626		SD	0.586 0.001 0.189	0.054 0.022 0.030	0.074 0.356 0.095	0.038	0.005 0.113 0.750	0.005 0.409	0.104 0.141 0.531	0.047 0.204 0.423	0.177 0.117 0.091			threonine e; His, his
	SD	0.228 0.041 0.058	0.115 0.073 0.090	0.129 0.080 0.005	0.010 0.183 0.003 0.053	0.049	0.060 0.058 0.003	0.302 0.040 0.057	0.128 0.013 0.123			His	13.86 1.82 2.80	2.99 1.63 4.67	3.63 7.66 1.32	0.89	0.38 2.34 27.71	1.68 19.25	3.95 5.85 22.55	0.93 5.81 15.03	5.01 6.35 3.26	6.72 27.71	0.38 7.424	oline; Thr, Lys, lysin
	Ser	2.39 1.03 10.18	8.00 4.42 1.61	1.93 2.47 1.36	0.44 3.02 0.65 2.92	1.58 3.75	4.37 0.98 3.13	5.50 2.03 2.29	3.03 0.99 3.27	2.97 10.18 0.44 2.296		SD	0.153 0.025 0.033	0.054 0.047 0.018	0.063 0.041 0.004	0.040	0.063 0.025 0.009	0.019 0.038	0.032 0.040 0.004	0.098 0.024 0.022	0.014 0.007 0.054			e; Pro, pro ornithine;
	SD	0.047 0.048 0.070	0.037 0.092 0.096	0.057 0.071 0.069	0.039 0.072 0.063 0.008	0.110	0.035 0.029 0.002	0.121 0.056 0.011	0.019 0.156 0.045			Lys	3.71 0.86 1.41	2.72 1.39 0.56	1.78 1.14 0.37	0.95	0.83 0.60 0.83	0.56 1.95	0.95 0.70 1.10	2.10 1.23 0.64	1.01 0.65 1.41	1.23 3.71	0.37 0.772	isoleucine ine; Orn,
(Thr	1 1.18 5 2.46 8 2.07	4 2.85 4 4.82 1 2.17	0 0.85 3 0.73 2 1.35	8 1.70 9 1.28 7 1.42 0.19	5 4.09 8 0.21	9 0.92 4 0.90 5 0.26	2.83 2.83 0.40	5 0.47 9 1.66 7 1.51	1.56 4.82 0.19 1.185		SD	0.013 0.002 0.009	0.005 0.003 0.001	0.001 0.014 0.001	0.001	0.005 0.005 0.005	0.005	0.004 0.007 0.001	0.006 0.004 0.003	0.015 0.002 0.001			ucine; lle, In, glutam
amino acid (%	SD	0.04	0.02	0.020	0.0000	0.12	0.000	0.010	0.030	0	id (%)	Om	0.15 0.17 0.11	0.33 0.11 0.02	0.07 0.40 0.04	0.01	0.09 0.10 0.11	0.24 0.12	0.23 0.26 0.07	0.18 0.09 0.07	0.75 0.02 0.10	0.16 0.75	0.01 0.159	ne; Leu, le /steine; G
	Dro	14 0.94 10 0.37 48 0.62	21 1.37 32 0.66 92 0.26	13 0.91 76 0.24 55 0.35	07 0.33 11 0.49 34 0.37 13 0.37	23 2.35 07 0.35	76 0.70 38 0.10 42 0.22	24 1.85 22 0.42 21 0.39	59 1.31 11 0.25 42 0.55	0.65 2.35 0.10 0.55	amino a	SD	0.158 0.042 0.079	0.034 0.071 0.055	0.021 0.037 0.177	0.031	0.005 0.032 0.014	0.080 0.041	0.013 0.002 0.002	0.001 0.032 0.009	0.055 0.009 0.114			; Val, valir e; Cys, c
	e SI	19 0.1 17 0.0 16 0.0	88 88 0.0 0.0	52 0.1 54 0.0	12 00 00 00 00 00 00 00 00 00 00	19 0.0 26 0.0	17 0.0 81 0.0 11 0.0	37 0.1 34 0.0 75 0.0	44 30 34 0.0 0.0	76 39 396		GIn	3.56 2.04 3.27	1.49 1.73 2.54	0.80 0.52 3.36	0.97	0.21 1.13 0.66	2.03 0.82	0.20 0.20 0.42	0.54 1.72 0.11	1.91 1.29 3.03	1.44 3.56	0.11 1.087	ly, glycine enylalanir
	SD I	002 0.02	015 6. 004 0. 006 2.	014 3.0 006 1.1 003 1.1	003 55 0	005	005 2.009 2.1.1.1	006 007 007 007	006 0.1	- 00		SD	0.164 0.085 0.406	0.025 0.301 0.179	0.119 0.045 0.002	0.015	0.359 0.038 0.010	0.036 0.004	0.084 0.058 0.001	0.242 0.028 0.029	0.016 0.030 0.362			alanine; G e; Phe, ph
	Leu).81 0).11 0).13 0).13 0	0.23 0.0118 0.0018 0.0118 0.0018 0.0118 0.001	0.37 0.0.111 0.0.0.116 0.0.0.0.0000000000000	0 111 0 0 0.121 0 0 0.110 0 0 0.110 0 0 0 0 0 0 0 0 0	0.20	0.34 0).17 0).18 0).18	0.26 0).14 0).12 0	0.11 00.117 00.01	0.23 1.01 0.06 0.223		Cys	4.92 1.98 13.75	1.90 8.07 6.30	2.71 1.04 6.00	1.45	4.84 1.90 0.45	1.27 0.33	1.92 1.62 0.33	10.00 1.19 0.72	1.21 0.80 9.02	3.49 13.75	0.33 3.617	cids; Ala, a
	SD	0.072 0.002 0.035 0.035	0.067 0.047 0.003 0.003	0.061 0.040 0.036 0.036	0.001 0.0162 0.0162 0.016	0.100	0.078 (0.033 0.017	0.053 0.024 0.001 0.001	0.062 0.031 0.035 0.035			SD	0.040 0.007 0.008	0.014 0.013 0.011	0.026 0.001 0.011	0.004	0.007 0.006 0.005	0.006 0.006	0.019 0.001 0.006	0.019 0.004 0.012	0.004 0.001 0.008			e amino a Hyp, hyd
	Val	2.21 0.08 0.22	3.46 0.59 0.12	1.78 0.99 0.96	0.08 1.77 0.48 0.82	1.88 0.57	1.83 0.96 1.03	1.26 0.82 0.59	2.40 0.69 0.86	1.10 3.46 0.08 0.834		Phe	1.78 0.61 0.18	0.75 0.24 0.29	0.40 0.06 0.19	0.16	0.11 0.18 0.12	0.25 0.13	0.48 0.02 0.14	0.57 0.36 0.46	0.11 0.15 0.46	0.34 1.78	0.02 0.361	mined free ethionine;
	SD	0.055 0.056 0.020	0.347 0.028 0.863	1.367 1.592 0.686	0.015 2.660 0.277 0.158	0.007 0.178	0.923 1.580 0.491	1.452 0.732 0.594	0.519 0.024 0.036			SD	0.308 0.607 0.070	0.205 0.098 0.123	0.872 0.466 0.036	0.324	0.524 0.782 0.029	0.703 0.237	0.073 0.049 0.098	0.015 0.511 0.208	0.224 1.084 0.027			f the deter Is; Met, m
	Gly	2.20 2.69 0.46	19.51 0.77 23.02	23.11 32.52 16.91	0.73 44.98 5.46 7.63	0.26 5.60	16.96 40.05 13.14	19.41 16.69 13.13	23.48 0.73 1.02	13.77 44.98 0.26 12.919		Hyp	4.82 11.58 3.93	9.51 5.60 2.40	13.36 4.54 5.06	13.14	10.97 24.81 2.26	14.11 7.06	3.78 1.11 2.70	2.92 8.97 8.02	7.77 14.14 5.08	7.82 24.81	1.11 5.449	∑, sum o amino acio
	SD	0.082 0.099 0.033	0.073 0.086 0.150	0.079 0.085 0.106	0.028 0.043 0.067 0.018	0.080	0.132 0.029 0.020	0.079 0.006 0.056	0.103 0.037 0.061			SD	0.010 0.008 0.008	0.001 0.014 0.012	0.001 0.008 0.016	0.006	0.016 0.014 0.013	0.004 0.016	0.004 0.002 0.001	0.049 0.002 0.004	0.012 0.002 0.015			ninations; ned free a
	Ala	2.40 2.06 1.62	3.85 2.48 3.48	1.48 1.60 3.92	1.52 1.154 1.11 0.95	1.99 1.64	3.56 0.91 1.27	7.14 2.14 1.28	3.28 0.96 3.08	2.30 7.14 0.91 1.407		Met	0.35 0.08 0.34	0.02 0.48 0.15	0.13 0.18 1.28	0.14	0.36 0.25 0.37	0.16 0.16	0.03 0.03 0.61	0.77 0.02 0.10	0.14 0.03 0.34	0.27 1.28	0.02 0.289	rree deten
	year	2000 2001 2002	2000 2001 2002	2000 2001 2002	2001 2000 2001	2001	2000 2001 2002	2000 2001 2002	2000 2001 2002			year	2000 2001 2002	2000 2001 2002	2000 2001 2002	2001	2000 2001 2002	2001 2002	2000 2001 2002	2000 2001 2002	2000 2001 2002			iation of th sum of th
geographical	ŏrigin	Amarante	Baião	Bragança	Caminha Covilhã	Custóias	Pinhel	Vila Real	Viseu		deodraphical	geographilicar	Amarante	Baião	Bragança	Caminha	Covilhã	Custóias	Pinhel	Vila Real	Viseu			andard dev. tic acid; ∑,
obser-	vation	25 26 27	28 29 30	31 32 33	34 35 37	308	40 41 42	43 45	46 47 48	mean miax SD	ohser.	vation	25 26 27	30 98 30 98	33 33 33 2	34	35 36 37	38 39	40 41	43 45	46 47 48	mean max	S D	^a SD, st Asp, aspar

Comp.1 (28.81%)

Figure 3. PCA of free amino acids in quince fruit, from 48 independent observations. Ala, alanine; Gly, glycine; Val, valine; Leu, leucine; Ile, isoleucine; Pro, proline; Thr, threonine; Ser, serine; Glu, glutamic acid; Asn, asparagine; Asp, aspartic acid; Met, methionine; Hyp, hydroxyproline; Phe, phenylalanine; Cys, cysteine; Gln, glutamine; Orn, ornithine; Lys, lysine; His, histidine; Tyr, tyrosine; Trp, tryptophan.

acid, and 2 kaempferol glycosides acylated with *p*-coumaric acid) (**Table 2**), as previously observed (10, 19, 20).

Generally, in quince pulp, the most abundant phenolic was 5-O-caffeoylquinic acid, whereas the major phenolic compound in quince peel was rutin. According to Silva et al. (10), in all studied cases, quince peel had a higher amount of phenolics than quince pulp. Absorption of UV light is a general feature of phenolic compounds (26). Some of them can be considered as filters that protect certain fragile cell structures (e.g., chloroplasts) from UV radiation. These filters consist mainly of flavonols and are located in the skins of fruits (26). In addition, because of their antioxidant properties, polyphenols can serve as protection against photooxidation caused by UV light (26). The antioxidant potential of quince pulp and peel methanolic extracts has already been reported (20). Peel methanolic extract exhibited greater antioxidant activity than the corresponding pulp extract, mainly due to the different qualitative and quantitative phenolic profile of these two parts of quince fruit.

The linear regression analysis (ANOVA full model) showed significant differences between the phenolic profiles of quince pulp and peel (p < 0.001). Significant differences were also found among the samples harvested in the three years, in terms of 3-*O*-caffeoylquinic acid (p < 0.001), 5-*O*-caffeoylquinic acid (p < 0.001). Geographical origin did not influence significantly the phenolic composition of this fruit.

The differences between pulp and peel phenolic profiles were emphasized during PCA. Two main PCs accounted 81.29% of the total variability, PC1 (74.14%) and PC2 (7.15%) (Figure 1). PC1 is primarily responsible for the difference between the contents of caffeoylquinic acids (3-O-, 4-O-, and 5-O-caffeoylquinic acids and 3,5-O-dicaffeoylquinic acid) and flavonoids (quercetin 3-galactoside, rutin, kaempferol glycoside, kaempferol 3-glucoside, kaempferol 3-rutinoside, quercetin glycosides acylated with p-coumaric acid, and kaempferol glycosides acylated with p-coumaric acid). This characterizes the difference in the phenolic composition of pulp and peel. For example, quince pulp had an average content of 3-Ocaffeoylquinic acid of $30.51 \pm 10.058\%$, whereas peel had an average value of $11.77 \pm 7.426\%$; peel had an average content of kaempferol-3-rutinoside of $3.95 \pm 1.890\%$, whereas in pulp this flavonoid was absent (Tables 1 and 2). PC2 relates the content of 4-O-caffeoylquinic acid against the contents of 5-Ocaffeoylquinic and 3,5-O-dicaffeoylquinic acids.

Generally, peel had a lower dispersion in terms of caffeoylquinic acids and flavonoids composition, making it possible to pool the data. However, the pulps had significant differences in the caffeoylquinic acids composition. Here, it is possible to observe three main groups: one rich in 4-*O*-caffeoylquinic acid and poor in 5-*O*-caffeoylquinic and 3,5-*O*-dicaffeoylquinic acids (observations 2, 10, and 24); another rich in 5-*O*-caffeoylquinic and 3,5-*O*-dicaffeoylquinic acids and poor in 4-*O*-caffeoylquinic acid (observations 1, 4, and 6); and another with average

Figure 4. PCA of phenolics, organic acids, and free amino acids in quince fruit, from 48 independent observations: (a) PC1 versus PC2; (b) PC2 versus PC3. CQA3, 3-O-caffeoylquinic acid; CQA4, 4-O-caffeoylquinic acid; CQA5, 5-O-caffeoylquinic acid; diCQA35, 3,5-O-dicaffeoylquinic acid; Q3Gal, quercetin 3-galactoside; Q3Rut, rutin; K3Gly, kaempferol 3-glycoside; K3Glu, kaempferol 3-glucoside; K3Rut, kaempferol 3-rutinoside; QGly-pC1 and QGly-pC2, quercetin glycosides acylated with *p*-coumaric acid; KGly-pC1 and KGly-pC2, kaempferol glycosides acylated with *p*-coumaric acid; Ala, alanine; Gly, glycine; Val, valine; Leu, leucine; Ile, isoleucine; Pro, proline; Thr, threonine; Ser, serine; Glu, glutamic acid; Asn, asparagine; Asp, aspartic acid; Met, methionine; Hyp, hydroxyproline; Phe, phenylalanine; Cys, cysteine; Gln, glutamine; Orn, ornithine; Lys, lysine; His, histidine; Tyr, tyrosine; Trp, tryptophan.

composition (the rest of the observations), which may indicate the occurrence of caffeoylquinic acids isomerization in pulp matrix, once, according to Macheix et al. (26), transesterification of caffeoylquinic acids appears to be possible in fruit matrices.

From the food quality control point of view, it is very important to distinguish between quince pulp and peel, because Portuguese legislation (1) forbids the use of peel in the manufacture of quince jam.

Organic Acids. As previously reported (11), generally, the pulp and peel had similar profiles composed of seven identified organic acids: oxalic, citric, ascorbic, malic, quinic, shikimic, and fumaric acids (**Tables 3** and 4). Quince fruit is characterized by large amounts of malic plus quinic acids, both in pulp and in peel, containing an average value of 96.45%, with maximum and minimum values of 99.46 and 90.46%, respectively. The ANOVA detected significant differences in the composition of quince fruits collected in the years 2000, 2001, and 2002, in terms of ascorbic acid (p < 0.05), shikimic acid (p < 0.05), fumaric acid (p < 0.01), and total organic acid content (p < 0.001), leading to the occurrence of a small decrease of organic acid total content for years 2000–2002. The part of the fruit and the geographical location did not influence significantly the organic acid composition of quince fruit.

Two PCs characterized the quince fruit organic acids composition (responsible for 61.61% of total variation). PC1 describes the domain of malic plus quinic acids on the quince fruit organic acid composition (37.54% of all variation). PC2 describes the orthogonality between oxalic plus ascorbic acids and citric acid in some quince fruits (24.07% of total variation). It is possible to observe that most samples presented large proportions of malic plus quinic acids, lowering the content of the other acids. Figure 2 shows the high orthogonality between the oxalic plus ascorbic acids and citric acid. Some samples were very rich in terms of citric acid, with very low ascorbic and oxalic acids contents (observations 1 and 23), and others were rich in oxalic plus ascorbic acids but poor in citric acid (samples 15 and 44). It is also possible to observe some samples (3, 21, 27, 34, 39, and 42) balanced in terms of oxalic, ascorbic, and citric acids. In this case, in the PCA pulp and peel could not be distinguished.

Free Amino Acids. The quince fruit free amino acid profile was highly dispersed among the 21 constituents (**Tables 5** and **6** and **Figure 3**). Nevertheless, this fruit is richer in terms of asparagine (20.52%), aspartic acid (18.63%), glycine (12.32%), glutamic acid (11.66% for pulps and 18.01% for peels), hydroxyproline (11.64% for pulps and 7.82% for peels), and histidine (6.26%).

The ANOVA showed that some free amino acids contents vary significantly between harvesting year [Ala (p < 0.05), Val (p < 0.001), Leu (p < 0.001), Ile (p < 0.001), Pro (p < 0.001), Glu (p < 0.001), Phe (p < 0.01), Orn (p < 0.05), Lys (p < 0.01), and His (p < 0.001)] and geographical origin [Leu (p < 0.05), Lys (p < 0.01), and Tyr (p < 0.05)]. Generally, the free amino acids profiles are similar in pulp and peel. Nevertheless, the hydroxyproline content is significantly higher in pulp, whereas the glutamic acid content is significantly lower in this part of the fruit (p < 0.05).

The large dispersion in free amino acids composition led to a large number of PCs with significant variation (n = 6, >5% of the total variation). The first two PCs account for 43.54% of the total variability (28.81 and 14.73%, respectively) (**Figure 3**). PC1 represents the ratio of alanine, valine, leucine, isoleucine, proline, threonine, serine, phenylalanine, cysteine, glutamine, ornithine, lysine, and tyrosine against asparagine and hydroxyproline contents. PC2 describes the ratio of threonine, serine, glutamic acid, aspartic acid, methionine, cysteine, and glutamine against glycine, valine, leucine, asparagine, phenylalanine, ornithine, lysine, histidine, and tryptophan contents. **Figure 3** shows that all observations lie around the PC1 and PC2 center. The large variability of the free amino acids profile allows observations such as 4, 25, and 27, where the amounts of isoleucine, lysine, leucine, and valine (sample 4), phenylalanine and tryptophan (sample 25), and cysteine, threonine, methionine, and glutamic acid (sample 27) are unbalanced against the rest of the observations. In this case, in the PCA pulp and peel could not be distinguished.

Global Analysis. Figure 4 presents the PCs of quince fruit composition (phenolics, organic acids, and free amino acids). Correlation analysis shows that there was no direct correlation among phenolics, organic acids, and free amino acids, so they are considered as independent observations. Three PCs explain 50.86% of the variability of all data: PC1 (24.60%), PC2 (16.78%), and PC3 (9.49%). PC1 emphasizes the differences in terms of phenolic compounds between pulp and peel. PC2 presents the differences between caffeoylquinic acids and flavonoids composition of pulp and peel, as well as the small differences in organic acids and free amino acids. PC3 describes the variation in terms of organic acids and the orthogonality existent between 3,5-*O*-dicaffeoylquinic acid and 4-*O*-caffeoylquinic acid.

Conclusions. After the analysis of several samples of quince pulp and peel of quince fruits from nine geographical locations in Portugal, harvested in three consecutive years (2000-2002), it can be concluded that phenolics determination is the most interesting with regard to the discrimination of these two parts of the fruit. The content of organic acids is very characteristic of quince fruit (both pulp and peel), being dominated by malic and quinic acids, the sum of which represents always >90% of the organic acids total content. Among the chemical parameters analyzed, the free amino acids profile is the most variable. Nevertheless, quince pulp is characterized by higher hydroxy-proline and lower glutamic acid contents than peel. These data may be useful for the elaboration of a database for the detection of adulteration in quince products.

LITERATURE CITED

- Decreto-Lei no. 97/84 de 28 de Março. Diário da República-I Série B (Portugal) 1984, 74.
- (2) Scheyen, L.; Dirinck, P.; Sandra, P.; Schamp, N. Flavor analysis of quince. J. Agric. Food Chem. 1979, 27, 872–876.
- (3) Umano, K.; Shoji, A.; Hagi, Y.; Shibamoto, T. Volatile constituents of peel of quince fruit, *Cydonia oblonga* Miller. J. Agric. Food Chem. **1986**, 34, 593–396.
- (4) Winterhalter, P.; Lutz, A.; Schreier, P. Isolation of a glucosidic precursor of isomeric marmelo lactones from quince fruit. *Tetrahedron Lett.* **1991**, *32*, 3669–3670.
- (5) Guldner, A.; Winterhalter, P. Structures of two ionone glycosides from quince fruit (*Cydonia oblonga* Mill.). *J. Agric. Food Chem.* **1991**, *39*, 2142–2146.
- (6) Lutz, A.; Winterhalter, P.; Schreier, P. Isolation of a glucosidic precursor of isomeric marmelo oxides from quince fruit. *Tetrahedron Lett.* **1991**, *32*, 5943–5944.
- (7) Lutz, A.; Winterhalter, P. Isolation of additional carotenoid metabolites from quince fruit (*Cydonia oblonga* Mill.). *J. Agric. Food Chem.* **1992**, *40*, 1116–1120.
- (8) Porter, L. J.; Foo, L. Y.; Furneaux, R. H. Isolation of three naturally occurring *O*-β-glucopyranosides of procyanidin polymers. *Phytochemistry* **1985**, *24*, 567–569.

- (9) Silva, B. M.; Andrade, P. B.; Seabra, R. M.; Ferreira, M. A. Determination of selected phenolic compounds in quince jams by solid-phase extraction and HPLC. *J. Liq. Chromatogr. Relat. Technol.* 2001, 24 (18), 2861–2872.
- (10) Silva, B. M.; Andrade, P. B.; Ferreres, F.; Domingues, A. L.; Seabra, R. M.; Ferreira, M. A. Phenolic profile of quince fruit (*Cydonia oblonga* Miller) (pulp and peel). *J. Agric. Food Chem.* **2002**, *50*, 4615–4618.
- (11) Silva, B. M.; Andrade, P. B.; Mendes, G. C.; Seabra, R. M.; Ferreira, M. A. Study of the organic acids composition of quince (*Cydonia oblonga* Miller) fruit and jam. J. Agric. Food Chem. 2002, 50, 2313–2317.
- (12) Silva, B. M.; Casal, S.; Andrade, P. B.; Seabra, R. M.; Oliveira, M. B.; Ferreira, M. A. Development and evaluation of a GC/ FID method for the analysis of free amino acids in quince fruit and jam. *Anal. Sci.* **2003**, *19*, 1285–1290.
- (13) Silva, B. M.; Casal, S.; Andrade, P. B.; Seabra, R. M.; Oliveira, M. B.; Ferreira, M. A. Free amino acid composition of quince (*Cydonia oblonga* Miller) fruit (pulp and peel) and jam. J. Agric. Food Chem. **2004**, 52, 1201–1206.
- (14) Ferreres, F.; Silva, B. M.; Andrade, P. B.; Seabra, R. M.; Ferreira, M. A. Approach to the study of *C*-glycosyl flavones by ion trap HPLC-PAD-ESI/MS/MS: application to seeds of quince (*Cy-donia oblonga*). *Phytochem. Anal.* **2003**, *14*, 352–359.
- (15) Silva, B. M.; Andrade, P. B.; Seabra, R. M.; Oliveira, M. B. P. P.; Ferreira, M. A.; Ferreres, F. Composition of quince (*Cydonia oblonga* Miller) seeds: phenolics, organic acids and free amino acids. *Nat. Prod. Res.* **2004**, in press.
- (16) Andrade, P. B.; Carvalho, A. R. F.; Seabra, R. M.; Ferreira, M. A. A previous study of phenolic profiles of quince, pear, and apple purees by HPLC diode array detection for the evaluation of quince puree genuineness. *J. Agric. Food Chem.* **1998**, *46*, 968–972.
- (17) Silva, B. M.; Andrade, P. B.; Mendes, G. C.; Valentão, P.; Seabra, R. M.; Ferreira, M. A. Analysis of phenolic compounds

in the evaluation of commercial quince jam authenticity. J. Agric. Food Chem. **2000**, 48, 2853–2857.

- (18) Silva, B. M.; Andrade, P. B.; Valentão, P.; Mendes, G. C.; Seabra, R. M.; Ferreira, M. A. Phenolic profile in the evaluation of commercial quince jellies authenticity. *Food Chem.* **2000**, *71*, 281–285.
- (19) Silva, B. M.; Andrade, P. B.; Gonçalves, A. C.; Seabra, R. M.; Oliveira, M. B.; Ferreira, M. A. Influence of jam processing upon the contents of phenolics, organic acids and free amino acids in quince fruit (*Cydonia oblonga* Miller). *Eur. Food Res. Technol.* **2004**, *218*, 385–389.
- (20) Silva, B. M.; Andrade, P. B.; Valentão, P.; Ferreres, F.; Seabra, R. M.; Ferreira, M. A. Quince (*Cydonia oblonga* Miller) fruit (pulp, peel, and seed) and jam: antioxidant activity. *J. Agric. Food Chem.* **2004**, *52*, 4705–4712.
- (21) Box, G.; Hunter, W.; Hunter, J. *Statistics for Experimenters*; Wiley: New York, 1978.
- (22) Montegomery, D. Design and Analysis of Experiments, 3rd ed.; Wiley: Singapore, 1991.
- (23) R-Project. *R: A programming environment for data analysis and graphics*; 2004; http://www.r-project.org/.
- (24) Neter, J.; Kutner, M.; Natchtsheim, C.; Wasscrman, N. Applied Statistical Linear Models, 4th ed.; Irwin: Chicago, IL, 1996.
- (25) Krazanowski, W. J. Principles of Multivariate Analysis: A User's Perspective; Clarenson Press: Oxford, U.K., 1998.
- (26) Macheix, J.-J.; Fleuriet, A.; Billot, J. Importance and roles of phenolic compounds in fruits. In *Fruit Phenolics*; CRC Press: Boca Raton, FL, 1990.

Received for review July 13, 2004. Revised manuscript received October 8, 2004. Accepted October 10, 2004. B.M.S. and R.C.M. are grateful to Fundação para a Ciência e a Tecnologia for grants (PRAXIS XXI/BD/ 21339/99 and SFRH/BPD/9486/2002, respectively).

JF040321K